

SUNY Korea CSE549 Spring 2017 Instructor: Sael lee

Biological Networks

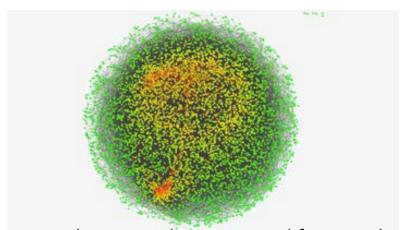
Ref: M. Zitnik and J. Leskovec's CS2224W slides on bio-network.

Types of Biological Networks

- □ There are several types of bio-networks.
- □ Classification:
 - ☐ Gene co-expression networks
 - □ Protein-protein interaction networks
 - □ Signal transduction and gene regulatory networks (pathways)
 - □ Metabolic networks (pathways)
 - □ Other types of networks
 - □ Phylogenetic trees
 - □ Mixture of networks

Gene Co-expression Network

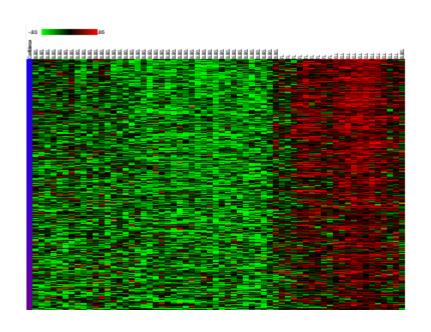
- □ Description:
 - □ **Gene co-expression** is process where set of genes are expresse d in coordination to produce proteins.
 - □ Gene co-expression networks contains information on the cor relation of the gene expression in different biological or envir onmental conditions.



"A gene co-expression network constructed from a microarray dataset containing gene expression profiles of 7221 genes for 18 gastric cancer patients - S. Mohammad H. Oloomi "

Gene Co-expression Network cont.

- □ Construction:
 - □ form edges between pairs of genes that show similar expression patterns across biological conditions,
 - □ where the activation levels of two co-expressed genes rise and fall together across conditions.
- □ Major DBs:
 - □ The Cancer Genome Atlas
 - □ NCBI Gene Expression Omnibus
 - □ GeneMANIA
 - □ EBI Array Express
 - □ GTEx Data Portal
 - □ MGI-Mouse Gene
 - □ Expression Database
 - □ STRING (PPI)
 - □ Bgee.



Protein-Protein Interaction Networks (PPI)

□ Description: Networks where nodes represent proteins and edges represent interactions between the two protein.

□ Types of Interactions:

unknown

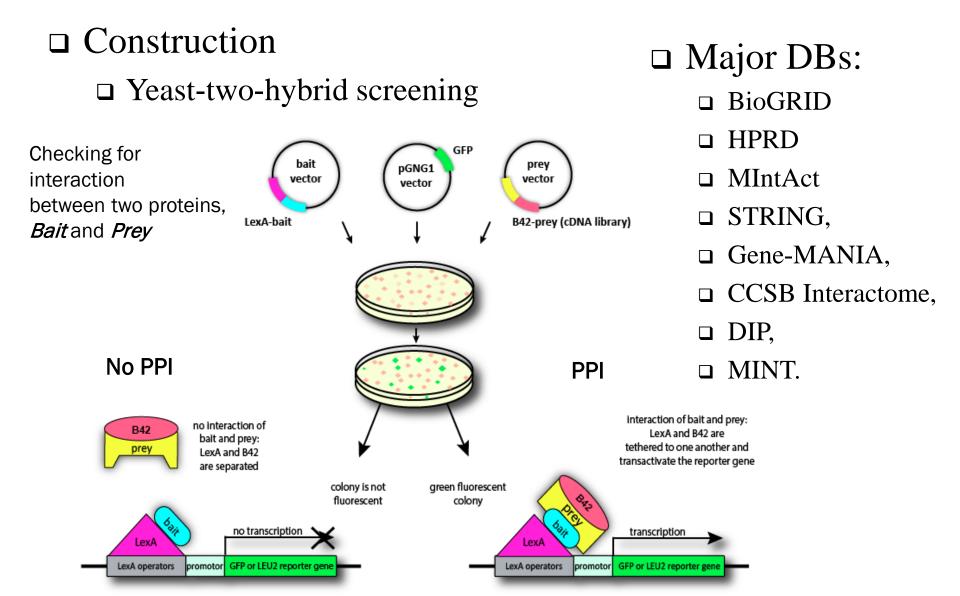
□ to build a protein complex or to activate/deactivate.

□ However, types of interaction in PPI, i.e. "activation", "binding to", or "phosphorylation", are often

phenotypic effect of removing a protein Yeast PPI - **red**, lethal - **green**, non-lethal orange, slow growth vellow, unknown

Color signifies the

Protein-Protein Interaction cont.



Signal Transduction and Regulatory Networks

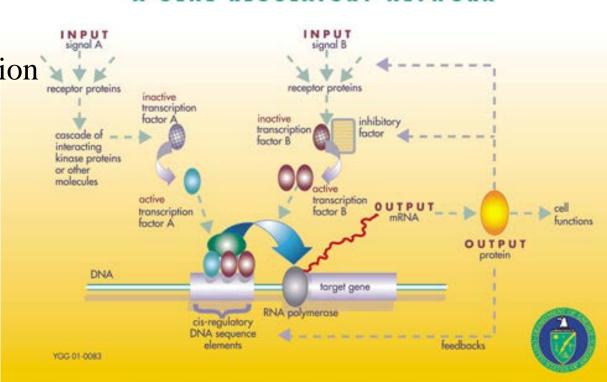
- □ Signal transduction
 - □ Communication process within a cell to coordinate its responses to an environmental change.
 - □ Response is a reaction of the cell, e.g., the activation of a gene or the production of energy.
- □ Signal transduction network of a cell
 - □ Complete network of all signal transduction pathways.
 - □ Signal transduction pathways: directed network of chemical reactions in a cell from a stimulus to the response

Signal Transduction and Regulatory Networks cont.

- □ **Gene regulation** is a type of response of a cell to an internal stimulus where expression of a gene is regulated by protein called a transcription factor.
- □ Gene regulatory network is a directed network where nodes represent genes and directed edges represent regulatory interactions
 - □ Ex> binding of a transcription factor (i.e., source of an edge) to a gene (i.e., target of an edge).
 - □ Compared to a gene co-expression network, a gene regulatory network attempts to represent the causal (directed) relationships between genes.

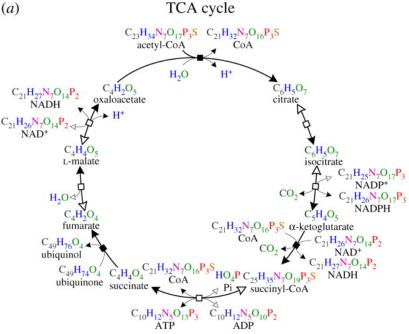
Signal Transduction and Regulatory Networks cont.

- □ Major DB:
 - □ Netpath,
 - □ Pathway Commons,
 - □ WikiPathways,
 - □ NCINature
 - □ Pathway Interaction Database,
 - □ RegulonDB,
 - □ TRANSFAC.



Metabolic Networks

- □ **Metabolic reaction** is a chemical process that transforms chemical substances or metabolites (i.e., reactants) into other substances (i.e., products) usually catalyzed by enzymes.
- Metabolic networks are directed networks where each
 - □ Node represents a metabolite (a c2,1H2,6N,O1,4F molecule) and
 - □ Edge represents a metabolic reaction.



Metabolic Networks cont

- □ **Metabolic pathway** is a connected sub-network of the metabolic network either representing specific processes or defined by functional boundaries.
 - □ Ex> network between an initial and a final chemical substance.
 - □ **Hyper-graph**: The nodes represent the substances and the directed hyper-edges represent the reactions from reactants to products and is labeled with the enzymes that catalyze the reaction.
 - □ **Directed bipartite graph**: $G = (V_s; V_r; E)$ with in V_s representing substances, nodes V_r representing metabolic reactions and directed edges E representing the transformation of substance.

Metabolic Networks cont.

- □ Major DBs
 - □ BRENDA
 - □ KEGG PATHWAY Database
 - □ MANET
 - □ Reactome
 - □ Small Molecule Pathway Database
 - □ MetaNetX.

Other types of networks

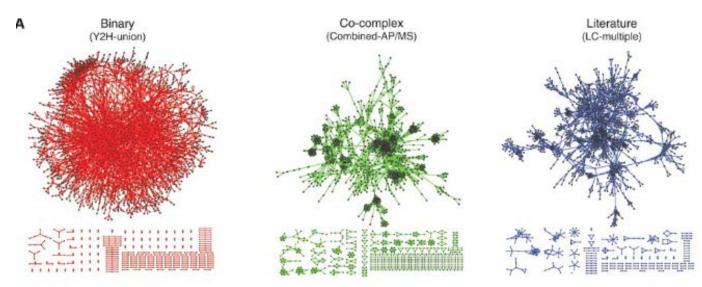
- □ Gene-phenotype network
 - □ Phenotypes: diseases
- □ Phylogenetic trees
- □ Gene Ontology

Applications of PPI

- □ Finding disease modules in networks
 - □ Method 1: Community detection
- □ Predicting biological attributes, such as protein functions
 - □ Method 2: Guilt-by-association principle
 - □ Method 3: Gene recommender systems

PPI Analysis

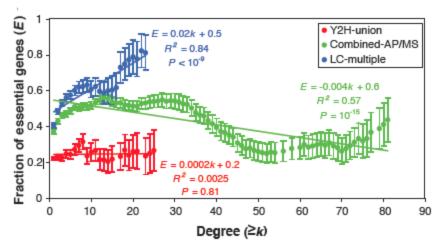
- ☐ Yeast Interactome Network (PPI) Data:
 - □ Three yeast protein-protein interaction (PPI) networks
 - □ List of **essential** yeast proteins, these proteins form a minimal protein set required for a living cell
 - □ Mapping of proteins to **phenotypes** associated with **deletion of** each protein

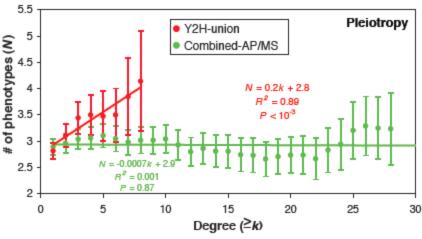


Yu et al., Science 2008

Hub Proteins

- □ **Hub proteins:** 20% nodes in the network with the highest degree
- □ Observations:
 - □ **Hub proteins** associate with **essential proteins**, confirmed in many but not all networks
 - □ **Hub proteins** associate with **larger numbers of phenotypes** than non-hub proteins



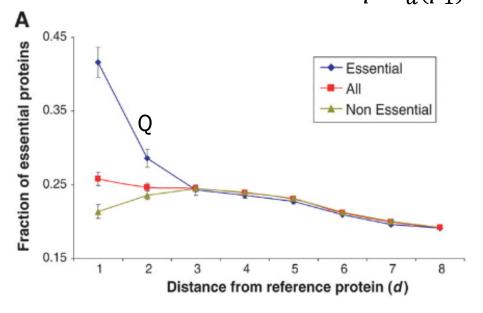


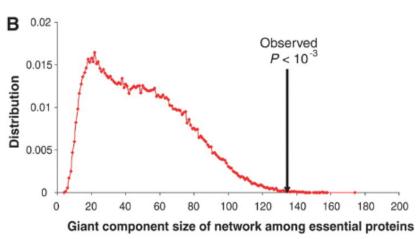
Essential Proteins in PPI

 \Box For a protein p_1 , take the **fraction of essential proteins** among all proteins whose distance to protein p_1 is equal to d:

$$Q(p_1, d) = \sum_{p \in S_d(p_1)} \frac{I(p \text{ is essential})}{\left|S_{d(p_1)}\right|} \qquad \text{I(x) = 1 if x true}$$

$$I(x) = 0 \text{ otherwise}$$



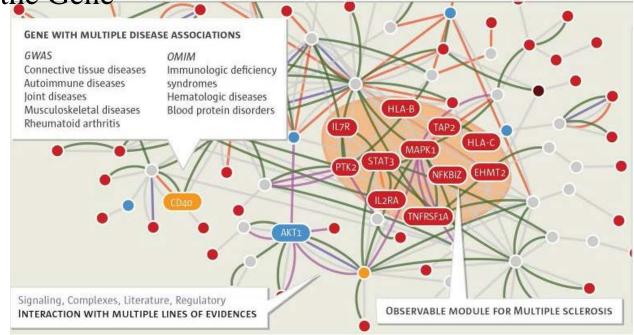


Disease Protein/Gene

□ Given disease proteins, compute shortest path distance d_s of each disease protein to the closest disease protein P (d_s) is shifted towards smaller d_s compared to the random expectation $P^{\text{rand}}(d_s)$

□ ⇒ Disease proteins **agglomerate** in one network neighborhood

of increasing the Gene



Disease Protein/Gene

- □ **Disease module** assumption: Disease proteins **tend to cl uster** in one network neighborhood
- □ Local interaction assumption: Disease proteins tend to interact with each other
- □ Mutations in interacting proteins tend to lead to diseases with **similar phenotypes** (i.e., symptoms)

□ Disease Module finding/prediction is important!

Functional Interaction Networks

□ PPI or co-expression network

- □ Types of protein/gene function prediction
 - □ "What does my gene do?"
 - □ **Goal:** Determine a gene's function based on who it interacts with "**guilt-by-association**"
 - □ "Give me more genes that function like these"
 - □ E.g., Find more multiple sclerosis genes, find new ciliary genes, find more members of a protein complex
 - □ "Should there be a connection between A & B"
 - □ Drug protein interaction prediction

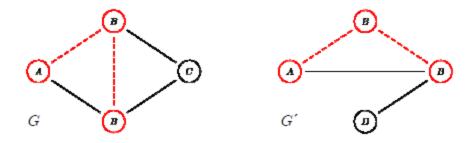
Graph Comparison

Definition 1 (Graph Comparison Problem)

Given two graphs G and G' from the space of graphs G. The problem of graph comparison is to find a mapping

$$s: G \times G' \rightarrow R$$

such that s(G,G') quantifies the similarity (or dissimilarity) of G and G'.



Isomorphism

Graph isomorphism

Find a mapping f of the vertices of G_1 to the vertices of G_2 such that G_1 and G_2 are identical; i.e. (x,y) is an edge of G_1 iff (f(x),f(y)) is an edge of G_2 . Then f is an **isomorphism**, and G_1 and G_2 are called **Isomorphic**

- No polynomial-time algorithm is known for graph isomorphism
- Neither is it known to be NP-complete

Isomorphism

Subgraph isomorphism

 G_1 and G_2 are **isomorphic** if there exists a subgraph isomorphism from G_1 to G_2 and from G_2 to G_1

Subgraph isomorphism is NP-complete

Measuring graph Similarity 1: Edit Distances

□ Principle

- □ Count operations that are necessary to transform G1 into G2
- □ Assign costs to different types of operations (edge/node insertion/deletion, modification of labels)

□ Advantages

- □ Captures <u>partial similarities</u> between graphs
- □ Allows for noise in the nodes, edges and their labels
- □ Flexible way of assigning costs to different operations

Disadvantages

- □ Contains subgraph isomorphism check (NP-complete) as one intermediate step
- Choosing cost function for different operations is difficult

Measuring graph Similarity 2: Topological Descriptors

- □ Principle
 - □ Map each graph to a <u>feature vector</u> (ex> finger printing methods)
 - □ Use distances and metrics on vectors for learning on graphs
- □ Advantages
 - □ Reuses known and efficient tools for feature vectors
- □ Disadvantages
 - □ Most feature vector transformation leads to loss of topological information
 - Or includes subgraph isomorphism as one step

Topological Descriptors cont.

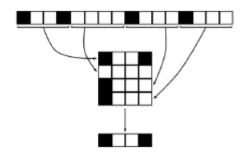
feature vectors (chemical fingerprints)

$$\phi(A) = (\phi_s(A))_s$$
 substructure

where

$$\phi_s(A) = \begin{cases} 1 & \text{if } s \text{ occurs in } A \\ 0 & \text{otherwise} \end{cases}$$

Modulo Compression (lossy)



Elias-Gamma Monotone Encoding (lossless)

[Baldi et al., 2007]

- index $j \rightarrow \lfloor log(j) \rfloor$ 0 bits + binary encoding of j
- $-j_i < j_{i+1}$: $\lfloor log(j_{i+1}) \rfloor \rightarrow \lfloor log(j_i) log(j_{i+1}) \rfloor$
- average compressed size = 1,800 bits

Measuring graph Similarity 3: Graph Kernels

□ Kernels on pairs of graphs

□ Principle

- \Box Let $\phi(x)$ be a vector representation of the graph x
- □ The kernel between two graphs is defined by:

$$K(x,x') = \phi(x)^T \phi(x')$$

- □ To solve convex optimization with kernels, kernels needs to be
 - \square Symmetric, that is, k(x, x') = k(x', x), and
 - □ Positive semi-definite (p.s.d.)
- □ Comparing nodes in a graph involves constructing a kernel between nodes
- □ Comparing graphs involves constructing a kernel between graphs.

Graph Kernels cont.

□ Advantages

□ Similarity of two graphs are inferred through kernel function

□ Disadvantages

□ Defining a kernel that captures the semantics inherent in the graph structure and is reasonably efficient to evaluate is the key challenge.

Brief history of graph kernels

- □ The idea of **constructing kernels** *on* **graphs** (i.e., between the nodes of a single graph) was first proposed by Kondor and Lafferty (2002), and extended by Smola and Kondor (2003).
- □ Idea of **kernels between graphs** were proposed by G"artner et al. (2003) and later extended by Borgwardt et al. (2005).
- □ Idea of **marginalized kernels** (Tsuda et al., 2002) was extended to graphs by Kashima et al. (2003, 2004), then further refined by Mah'e et al. (2004).